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Abstract This paper focuses on the application of an original global optimization algorithm,
based on the hybridization between a genetic algorithm and a semi-deterministic algorithm,
for the resolution of various constrained optimization problems for realistic credit portfolios.
Results are analyzed from a financial point of view in order to confirm their relevance.

Keywords Credit portfolio management · Risk measure · Global optimization · Genetic
algorithm · Semi-deterministic algorithm

1 Introduction

Continuous development of derivative credit products [1] makes risk management an
important activity in asset allocation of financial structures. Credit risk is the risk of trading
partners, called counterparties, not fulfilling their obligations on the due date resulting into
losses for investors (this includes bankruptcies such as Enron (2001) and WorldCom (2002)
cases [2]). The main objective of credit risk management is to provide models and tools
allowing to estimate and eventually reduce amount of losses. One of the most important
mathematical contribution in this field was the development of risk measures, such as Value
at Risk [3]. But, risk measures are highly non-linear functions. In addition, credit losses are
characterized by large probabilities of small earnings together with small probabilities of
large losses. This makes difficult the approximation of the loss density function which is
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necessary for the evaluation of the risk measure resulting in a non-convex and costly optimi-
zation problem. Therefore, one needs efficient global optimization techniques. In literature,
many works deal with a convexified version of risk measures, resulting on an over-estimation
of the risk [4,5].

In this paper, we focus on the application of a new optimization method for the improve-
ment under constraints of credit portfolio performances, namely non-convex risk measures
and income. This method is based on the hybridization between a genetic algorithm [6] and
an original semi-deterministic method [7]. The portfolio considered here comes from a real
case proposed by the “BNP-Paribas” Portfolio Management Team and belongs to a complex
category of credit portfolio called Collateralized Loan Obligations (CLO) [1].

In Sects. 2 and 7, we describe the general CLO structure and present the model used to
compute its risk measure and income. Section 3 gives a short introduction to our optimization
algorithm. Finally, in Sect. 4 we present the considered optimization problems and analyze
the results obtained with our algorithm.

2 Credit portfolio model

We present the general structure of a credit portfolio and explain how to evaluate its perfor-
mances.

2.1 General structure

We focus on a portfolio (called master portfolio) compound by parts of other portfolios (called
inner portfolio).

2.1.1 Inner portfolios: collateralized loan obligations

Collateralized Loan Obligations (CLO) are security interests in pools of assets, that usually
comprise loans (also called facilities). The objective, for financial institutions, is to buy secu-
ritization to protect themselves from possible defaults of counterparties in the CLO. Investors,
such as insurance companies, bear the credit risk (or a part of it) and receive until the CLO
maturity date a periodic remuneration increasing with the level of risk.

Multiple slices of securities are issued by the CLO, offering various credit risk charac-
teristics to investors. Slices are ranked, according to their degree of credit risk (the higher
risked slice is called junior, the medium risked slices are called mezzanines and the lower
risked slice is called senior). More precisely, if there is a default, investors on junior slice first
cover the loss. In cases where the loss is superior to the junior slice amount of money, other
investors, successively from mezzanines to senior, cover the remaining losses. However, the
investor’s earning increases with risk exposition.

2.1.2 Master portfolio—collateralized loan obligations2

During last years, the relative stability in corporate credit shifted investor interest further
toward structured instruments to enhance yield, CLO2 (CLO Square) emerged. The CLO2

(or Master CLO) may be constructed on the basis of single slice CLOs. A CLO2 simply
consists into a repackaging transaction of one or several single slices of CLOs (the Inner
CLOs (ICLO)). In addition to these ICLO slices, a set of additional stand-alone assets (here
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loans), called Single-Names (SN), can be included in the portfolio. And eventually, the CLO2

is divided in slices that will be proposed to investors.
A CLO2 has several interesting features: it is a highly diversified portfolio, it proposes two

layers of subordination (one at the level of the ICLOs and one at the level of the investment
slices in the Master CLO) and it is more resilient to low/medium losses scenarios. On the
other hand, CLO2 clearly leaves investors exposed to more extreme systemic market condi-
tions, in the sense that they experience no losses up to a point for about 90% of the cases,
after which the loss deterioration is fairly fast and highly severe [1].

Analyzing a CLO2 is difficult. There is an entire portfolio of credits to analyze combined
with the complexity of the slicing. Sophisticated credit portfolio models, such as the one
proposed in the next Subsection, should be used.

2.2 CLO2 loss evaluation model

The present model aims at evaluating our portfolio and in particular, compute its risk measure
and its income.

We consider a portfolio compound by nSICLO ∈ IN ICLO slices and nSN ∈ IN SNs.
This portfolio contains n ∈ IN different facilities (here loans), included in ICLOs and SNs,
denoted by (Faci )i=1,...,n .

Each facility Faci , i = 1, . . . , n, is characterized by its client Cli (the counterparty), nom-
inal NOi (the amount of money), maturity date Ti (the contract end date), spread Spi (the rate
of interest), geographical zone Ci , industry sector Ii , rating Rati (An evaluation of a client’s
relative safety from an investment standpoint), loss given default LGDi (the percentage of
money lost in case of default), R-square Ri (Represents the degree of correlation between
the value of a client’s assets and the behavior of the global economy). All those informations
are furnished by private institutions.

For each ICLO slice i , i = 1, . . . , nSICLO, we know its nominal NOSI C L Oi , amount of
subordination SubSI C L Oi (the position of the slice in the ICLO i) and rating RatSI C L Oi .

These inputs are stocked in a set denoted by PORT = (x,PORTdata), where x =
(NOSI C L O1 , . . . , NOSI C L OnSICLO

, NO1, . . . , NOnSN ) and PORTdata is the set of other data.
We denote by L(PORT) the random variable associated to the portfolio loss amount.

In order to compute the portfolio risk measure, we need to determine its density function
βL(PORT). To do so, we introduce βL(PORT),�B the discrete version of βL(PORT), where �B ∈
IN is a discretization step size. βL(PORT),�B is evaluated using M ∈ IN iterations of a Monte-
Carlo algorithm described in Sect. 7.

Then, using data stocked in PORT and βL(PORT),�B , we are able to compute:
Income The amount of money received by a person or organization because of return on

investments. In our case, this is given by:

IC(PORT) =
n∑

i=1

Spi × NOi (1)

Risk measure For the chance that return on a given investment is different than expected.
This includes possible partial or total loss.

One can give a more formal description of what said above. Let � be a finite set of states
of nature, � a σ -algebra and IP a risk measure. Any element X of the probability space
L∞(�,�, IP) is called risk and any mapping � : L∞(�,�, IP) → IR is called risk measure
on L∞(�,�, IP). Here, we focus on a particular and popular risk measure: the Value at Risk
(VaR).

123



418 J Glob Optim (2009) 43:415–427

The VaRα of a random variable X ∈ L∞(�,�, IP), is defined as:

VaRα(X) = inf

[
Z ∈ IR|

∫ Z

0
βX (x)dx > (1 − α)

]
(2)

where βX is the loss density function of X and α > 0 is a given confidence level (i.e., a
percent level).

VaRα(L(PORT)) can be interpreted as the nominal value of the smallest loss of the worst
α % losses. A complete presentation of risk measures and VaR can be found in [3–5,8].

3 Global optimization methods

We consider the following minimization problem:

min
x∈�

J (x) (3)

where J : � → IR is the cost function, x is the optimization parameter belonging to a
compact space � ⊂ IRN , with N ∈ IN. We assume J is bounded on �.

In this section, we give a short presentation of an original optimization method used to
solve (3). This algorithm is based on an hybridization between a semi-deterministic algo-
rithm and a particular genetic algorithm to which one aims to provide suitable populations
for global search.

3.1 Genetic algorithm

Genetic algorithms (GA) approximate the solution of (3) J through a sto-chastic process based
on an analogy with the Darwinian evolution of species [6]: a first family, called ‘population’,
X0 = {x0

l ∈ �, l = 1, . . . , Np} of Np possible solutions of the optimization problem, called
‘individuals’, is randomly generated in the search space �. Starting from this population, we
build recursively Ngen new populations, called generations, Xi = {xi

l ∈ �, l = 1, . . . , Np}
with i = 1, . . . , Ngen through three stochastic steps, called selection, crossover and mutation.
Below, we present GA through an original matrix-form formulation.

We first rewrite Xi using the following (Np, N )-real valued matrix form:

Xi =
⎡

⎢⎣

xi
1(1) . . . xi

1(N )
...

. . .
...

xi
Np

(1) . . . xi
Np

(N )

⎤

⎥⎦ (4)

Selection Each individual, xi
l is ranked with respect to its cost function value J (xi

l ) (i.e.,
the lower is its value of J (xi

l ) the higher is the ranking). Then Np individuals are randomly
selected (individuals with better ranking have higher chances to be selected), with eventual
repetitions, to become ‘parents’.

Introducing a binary (Np, Np)-matrix S i , generated according to previous ranking and
selection processes, with S i

j,k = 1 if the kth individual of Xi is the selected ‘parent’ number

j and S i
j,k = 0 otherwise, we define:

Xi+1/3 = S i X i . (5)

Crossover This process leads to a data exchange between two ‘parents’ and the apparition of
two new individuals called ‘children’. We determine, with a probability pc, if two consecutive
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parents in Xi+1/3 should exchange data or if they are directly copied into the intermediate
population Xi+2/3.

Introduce a real-valued (Np, Np)-matrix Ci where for each couple of consecutive lines

(2 j − 1, 2 j) (1 ≤ j ≤ Np
2 in case Np is even or 1 ≤ j ≤ Np−1

2 in case Np is odd), the
coefficients of the 2 j − 1th and 2 j th rows are given by:

Ci
2 j−1,2 j−1 = λ1, Ci

2 j−1,2 j = 1 − λ1, Ci
2 j,2 j−1 = λ2, Ci

2 j,2 j = 1 − λ2

In this expression:

• λ1 = λ2 = 1 if parents are directly copied (with a probability 1 − pc).
• λ1 and λ2 are randomly chosen in ]0, 1[ if a data exchange occurs between the two parents

(with probability pc).

Other coefficients of Ci are set to 0. If Np is odd, the Npth parent is directly copied, i.e.,
Ci

Np,Np
= 1.

This step can be summarized as:

Xi+2/3 = Ci X i+1/3 (6)

Mutation This process leads to new parameter values for some individuals of the population.
More precisely, each child is modified (or mutated) with a fixed probability pm .

Introduce for instance a random perturbation matrix E i with an i th line equal to:

• A random vector εi ∈ IRN , according to the admissible space �, if a mutation is applied
to the i th child (with probability pm).

• 0 if no mutation is applied to the i th child (with probability 1 − pm).

This step can then take the following form:

Xi+1 = Xi+2/3 + E i (7)

Therefore, the new population can be written as:

Xi+1 = CiS i X i + E i (8)

With these three basic evolution processes, it is generally observed that the best obtained
individual is getting closer after each generation to the optimal solution of the problem [9].
In practice, as final convergence is difficult with GA based algorithms, one should always
complete GA iterations by a descent method for better accuracy.

Engineers like GAs because these do not require sensitivity computation, perform global
and multi-objective optimization and are easy to parallelize. Their drawbacks remain their
computational complexity, possible degeneracy and lack of accuracy already mentioned and
cured coupling with descent methods. The hybridization with the semi-deterministic algo-
rithm presented below aims to reduce computational complexity.

3.2 Hybrid optimization algorithm

Consider a core optimization algorithm A0(v, P, ε) to solve (3) where v ∈ V is an initial
condition (V depends on the initial condition kind), ε ∈ IR quantifies a given stopping crite-
rion and P is the set of all remaining optimization parameters. We assume the existence of
vm ∈ V such that A0(vm, P, ε) approaches the solution of (3) with a precision ε ∈ IR.
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In this case, solving numerically (3) with the considered core optimization algorithm
means to solve

{
Find v ∈ V such that
J (A0(v, P, ε)) < ε,

(9)

where P and ε are fixed.
In order to solve (9), we propose to use a multi-layer semi-deterministic algorithm (here,

we use the simplified notation SDA) based on the secant method coefficients [7]. In the
sequel, we present a particular implementation of this algorithm in the case where a genetic
algorithm is considered as core optimization algorithm.

The objective of a such hybridization is to reduce the GA computational complexity, by
considering small population size Np and generation number Ngen, keeping the efficiency of
the method: SDA providing informations on the choice of the initial population and GA per-
forming global optimization with this population. More precisely, we consider the following
algorithms, denoted by (Ai )

I
i=1, corresponding to I ∈ IN layers of the considered SDA and

reading:

Step 1- Input: Xi
0,1, J 1, . . . , J i , P, ε

For l going from 1 to J i

Step 2.1- ol = Ai−1(Xi
0,l , J 1, . . . , J i−1, P, ε)

Step 2.2- If min{J (ok), k = 1, . . . , l} < ε Go to Step 3
Step 2.3- We construct Xi

0,l+1 = {xi
l+1, j ∈ �, j = 1, . . . , Np} as following:

∀ j ∈ [1, Np], xi
l+1, j = xi

l − J (ol)
oi

l −xi
l, j

J (ol )−J (xi
l, j )

where xi
l, j ∈ Xi

0,l

End of the loop For
Step 3- Output: Ai (Xi , J 0, . . . , J i , ε) = argmin{J (ok), k = 1, . . . , i}

where Xi
0,1 = {xi

1, j ∈ �, j = 1, . . . , Np} ∈ �Np is an initial population for A0 and

(J k)k=1,...,I ∈ INi are the iteration numbers of each algorithm Ak .
SDA intends to optimize the initial population of the considered GA. In cases where

there is a significant evolution between the initial population and the best element found by
GA, SDA generates a new population closer to this best element. In other cases, the secant
method used in Step 2.3 allows to create a new population far from the GA solution. GA is
then applied starting from this new population and we reiterate this complete process.

A complete description of this method can be found in [7,10,11]. We call this approach
HGSDA (Hybrid Genetic/Semi-Deterministic Algorithm).

3.3 Parameters in algorithms

In this paper, HGSDA is applied using the two-layer SDA A2 (i.e. I = 2) with J 1 = J 2 = 5
and ε = −∞ (i.e., the algorithm runs until the given complexity).

In addition, the GA parameters are turned as follows: the population size is set to Np = 10
and the generation number is set to Ngen = 10 . The selection is a roulette wheel type [6]
proportional to the rank of the individual in the population. The crossover is barycentric in
each coordinate with a probability of pc = 0.55. The mutation process is non-uniform with
a probability of pm = 0.55. A one-elitism principle, that consists in keeping the current best
individual in the next generation, has been imposed.

This set of parameters gives a good compromise between computational complexity and
result accuracy. It has been applied and compared with a classical genetic algorithm on
various benchmark test cases [7] and industrial applications [10–12].
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4 Portfolio optimization problems

In this section we are interested in optimizing the allocation (i.e., the nominal of ICLO
slices and SNs) of an initial portfolio, respecting given constraints, in order to improve its
performance. We consider the two following optimization problems:

• P1: Reduce the portfolio risk measure keeping its income higher or equal to the initial
value.

• P2: Maximize the portfolio income keeping its risk measure lower or equal to the initial
value.

The risk measure considered here is the VaR with a confidence level set to α = 0.1%,
this level is often used in banking system. It avoids too extreme, and thus non-realistic, risk
scenarios.

The initial portfolio has a CLO2 structure and is compound by 500 facilities dispatched in
nSICLO = 40 ICLO slices and nSN = 54 SNs. The portfolio nominal is close to 2×109 Euros
(E), its income near to 2 × 107 E and its VaR0,1% = 1.9 × 108 E. It has been constructed
in collaboration with “BNP-Paribas” Portfolio Management Team using recent market data,
described in Subsect. 2.2 and stocked in PORTdata, in order to be as realistic as possible
(those data can be found in [7]).

4.1 Parameterization

The parameters considered here are the nominal of ICLO slices and SNs compounding the
initial portfolio and the nominal of other SNs owned by “BNP-Paribas” Portfolio Manage-
ment Team that can be added to this portfolio (18 SNs).

Thus the set of parameters is represented by the following real vector:

x = (NOSICLO1 , . . . , NOSICLO40 , NOSN1 , . . . , NOSN72) (10)

In order to obtain a realistic optimized portfolio, respecting prescribed investment rules
all parameters are subject to the following constraints:

• Avoid too much concentration in one facility: each nominal must be inferior to 108 E.
• Avoid small facility investment: if a nominal is lower than 5 × 106 E it is set to 0 E.
• Use rating quality: each ICLO slice or SN have a certain rating. If the rating is good,

the nominal can be raised or decreased. If the rating is fair, the nominal must be inferior
to the initial portfolio value. Furthermore, for some problematic cases (fair rating and
liquidity problem), the nominal is kept to the initial value.

Due to those constraints, the total number of parameters is nparam = 65. The admissible
space is � = ∏nparam

i=1 0 × [5 × 106, ui ], where ui = initial value, in cases when the facility
can only be reduced and ui = 108 in other cases.

Constraints presented previously are common to P1 and P2. In Subsect. 4.2, we introduce
other constraints, specific to each problem, and integrate them directly in the formulation
of the cost function. For other scenarios, with other kind of constraints, a similar approach
could be carried out.

4.2 Cost function

Optimization problems P1 and P2 are of the form:

min
x∈�cons

J (x) (11)
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where the cost function J (x) corresponds to the desired performance value of the portfolio
associated with parameters x in �cons = {x ∈ �/ lc ≤ C(x) ≤ uc} with C , uc and lc being,
respectively, the problem specific constraint function, the upper and lower boundary values
of the constraint. More precisely, for each problem:

• P1: J (x) = VaR0,1%(L(x, PORTdata)), C(x) =IC(x, PORTdata), lc = 2 × 107 and
uc = +∞.

• P2: J (x) =IC(x, PORTdata), C(x) = VaR0,1%(L(x, PORTdata)), lc = 0 and uc =
1.9 × 108.

where PORTdata is given, VaR0.1(·) and IC(·) are evaluated using the model described in
previous Subsect. 2.2.

According to the work performed in [4], we reformulate the optimization problem (11)
including the constraints in J using wall functions. To do so, we introduce a new function J̃
in � to be minimized

J̃ (x) = J (x) + ϑ(min(uc − C(x), 0) + min(C(x) − lc, 0)) (12)

where ϑ � 1, and we rewrite problem (11) as:

min
x∈�

J̃ (x) (13)

4.3 Results and discussion

The initial and optimized portfolio allocation structures are depicted by Fig. 1. All results
presented in this Subsection are reported on Table 1.

The algorithm used to solve P1 and P2 is HGSDA, applied with parameters presented in
Subsect. 3.3. During this work, we prefer to use a non-gradient based method as sensitiv-
ity analysis is difficult to perform. Indeed, gradient directions push the solution out of �cons

resulting on a slow convergence of the algorithm and gradient approximation is time consum-
ing (because of intermediate Monte Carlo simulations). The use of HGSDA is also justified
as we do not need too much precision on the optimized result (due to market evolution it is
not possible to strictly respect the optimized allocation structure).

Table 1 Results obtained for problems P1 and P2

Nominal Nom. SICLO Nom. SN IC VaR0,1%

Initial 2. × 109 7.5 ×108 1.25 × 109 2.1 × 107 1.9 × 108

Sen. – – – 3% 7%

P1-opt. 2 × 109 5.5 × 108 1.45 × 109 2.1 ×107 1.3 × 108

Evo. 0% −26% +11% 0% −31%

Sen. – – – 1% 1%

P2-opt. 3.2 × 109 7.5 × 108 2.7 × 109 3. × 108 1.9 × 108

Evo. +57% +6% +88% +28% 0%

Sen. – – – 2% 1%

From (Left) to (Right), main portfolio characteristics: nominal, ICLO slice nominal (Nom. SICLO), SN nom-
inal (Nom. SN), Income (IC) and VaR0,1%. From (Top) to (Bottom), initial and optimized portfolios for P1
(P1-opt.) and P2 (P2-opt.). Evolution (Evo.) between initial and optimized portfolios and a sensitivity analysis
(Sen.) are also reported
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Fig. 1 Portfolios allocation structure: (Top) Initial, (Middle) P1-optimized and (Bottom) P2-optimized. (Left)
nominal of ICLO slices (Right) nominal of SNs

Overall, one optimization process requires approximatively 2000 evaluations of J̃ and a
computational time of 6 h on a 3 Giga-Hertz PC with 1 Giga-byte of memory. Convergence
histories of the best element for P1 and P2 are presented in Fig. 2.

Results obtained for P1 VaR0,1% has been reduced by 30% of its initial value. The portfolio
income is kept to the initial value. This is foreseeable as the result must be situated on the
border of �cons. Indeed, a portfolio having an income superior to 2 × 107 E can be improved
by projecting it on the border of �cons, the risk is then reduced as each nominal is decreased.
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Fig. 2 Convergence histories (normalized cost function value vs. iteration number) of the best element during
optimization process for problems (Top) P1 and (Bottom) P2

Result obtained by HGSDA suggests to choose a diversified allocation structure, with a
high number of different facilities, each one having an average nominal of 2 × 107 E (less
for higher risk products).

Due to the high correlation between each ICLO slice (the same product is present in
various ICLOs), the total nominal invested on this kind of product is reduced by 26%. In fact,
although a simple ICLO is robust to low loss scenarios, combining those ICLOs with a high
nominal increase the high loss scenarios probability: if a default occurs in one ICLO other
ICLOs have higher chances to be impacted as well.

In comparison, investing on diversified SNs with a reasonable nominal a-mount decreases
the chance to encounter high loss scenarios. Defaults in various sectors and countries should
occur in the same scenario to raise a critical loss amount (in fact, due to the diversification,
we obtain a portfolio with a majority of low correlation coefficients between facilities). Thus,
the total nominal of SNs in optimized portfolio is increased and equitably divided.
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Results obtained for P2 Income has been increased by 28%. As a consequence total
portfolio nominal has augmented by 57%, but for the same reasons as previously, the SN
nominal proportion has been raised (+88%). In order to improve the portfolio income and
control its risk level, essentially SNs combining good spread and good rating have been
privileged. Another consequence of the risk constraint is that the optimized portfolio still
relatively diversified. As expected, optimized portfolio VaR0,1% value is equal to the upper
constraint boundary value.

Sensitivity analysis At the end of each optimization process, a sensitivity analysis is
performed on the initial and optimized portfolios. To do so, nominals are randomly increased
or decreased by 107 E. In both cases, the optimized result is more stable than the initial one on
the Income and VaR0,1% values. This behavior seems to be conformal with the fact that the
optimized portfolios are more diversified than the original one and thus the impact of each
facility on the portfolio performances is minor. This is an interesting carateristic because, as
we said before, it will be difficult to construct the exact optimized portfolio.

5 Conclusion

An original hybrid genetic algorithm has been applied to optimize the performances of a
complex and realistic portfolio. Obtained results are satisfactory and in adequacy with finan-
cial intuition. Furthermore, even if this intuition can help to generate a general portfolio
structure, optimization method has furnished a precise allocation structure. In that sense,
optimization algorithms are powerful tools that can help portfolio managers to improve their
portfolio characteristics.
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Appendix: algorithm evaluating βL(PORT)

The method presented in this section is based on two well known approaches [13–15] often
used by financial institutions. We consider a portfolio with the set of inputs PORT described
in Subsect. 2.2. In order to compute a discrete version of its loss density function, denoted
by βL(PORT),�B where �B ∈ IN is a discretization step size, we consider the following
Monte–Carlo algorithm.

Step 1 Compute the covariance matrix 
 of facilities:

 represents the correlation between each facility client present in the portfolio. As it is

often used, we decided to apply the Kealhofer, McQuown and Vasicek (KMV) correlation
model (a complete description of this model can be found in [15]) in order to specify 
:

The KMV model is a factor model [14]. It does not model the correlations directly, but
in reference to 14 random variables (Ek)1≤k≤14 that model the global economic trends and
random variables PIl and PCm specific to the activity sector Il and the geographical area Cm .
Those factors Eki , PCi and PIi are supposed to be independent and normally distributed.
Thus, the correlation cor(i, j) between two clients associated to facilities i and j is given
by:
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cor(i, j) = Ri R j

[
14∑

k=1

αi
kα

j
k + β PCi β

PC j + β PIi β
PI j

]
+

√
1 − R2

i

√
1 − R2

jδi j (14)

where δi j = 1 if i = j , 0 if not. αi
k , βCi and βIi are real coefficients that models the depen-

dence of each client i to the factors Ek
i , PCi and PIi , respectively, and such that

∑14
k=1

(
αi

k

)2 +
(
β PCi

)2 +
(
β PIi

)2 = 1.

For m from 1 to M ∈ IR
Step 2- Generate a default time vector �:
The default time τi of a particular facility Faci is a random variable representing the time

from which the associated client Cli is in default (the time 0 corresponding to the creation date
of the portfolio). The random vector  = (τ1, . . . , τn) is called default times vector. Each
particular value of the default times vector  corresponds to a possible evolution scenario of
the portfolio (See [14] for more details). In practice, τi is given by:

τi = F−1
i (�(vi )) (15)

where �(·) denotes the standard normal Gaussian density function. vi is the iT h component
of a Gaussian vector V = (v1, . . . , vn), with zero mean, covariance matrix 
 (computed in
Step 1) and unit variances, given by:

V = �G (16)

where G is a standard Gaussian vector, � is the Cholesky decomposition of 
 defined as

 = �t� [16]. Fi is the marginal default probability function of τi [17] defined by:

Fi (t) = IP(τi ≤ t). (17)

In fact, we are able to approximate easily Fi thanks to the rating Rati (the rating gives the
internal default probabilities associated with each annual horizon) [14].

Step 3- Compute Lm the loss amount of the scenario m:
We first compute the loss amount Li,m of each facility Faci , i = 1, . . . , n, given by:

Li,m = (LGDi × NOi )χ[0,Ti ](τi ), (18)

where χ[0,Ti ](τi ) = 1 if τi ∈ [0, Ti ], 0 elsewhere.
Then, we consider two cases: If Faci is a SN, we add Li,m to Lm . If Faci is included in the

ICLO j , we add Li,m to the loss amount LI C L O j ,m of the ICLO j .
For each ICLO slice j , j = 1, . . . , nSICLO, the loss LSI C L O j ,m occurring into our master

CLO is given by:

L SI C L O j ,m = max{min{LICLO j ,m − SubSI C L Oi , NOSI C L Oi }, 0} (19)

Thus Lm is given by

Lm =
nSICLO∑

k=1

LSI C L Ok ,m +
n∑

k=1,Fack is a SN

Lk,m (20)

Step 4- Complete βL(PORT),�B:
This step is done according to �B and Lm : We add 1/M to the value of the discrete

interval of βL(PORT),�B where Lm is included.
End of the loop For
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